9,211 research outputs found

    Fatigue modeling of nano-structured chip-to-package interconnections

    Get PDF
    Driven by the need for increase in system¡¯s functionality and decrease in the feature size, International Technology Roadmap for Semi-conductors has predicted that integrated chip packages will have interconnections with I/O pitch of 90 nm by the year 2018. Lead-based solder materials that have been used for many decades will not be able to satisfy the thermal mechanical requirements of these fines pitch packages. Of all the known interconnect technologies, nanostructured copper interconnects are the most promising for meeting the high performance requirements of next generation devices. However, there is a need to understand their material properties, deformation mechanisms and microstructural stability. The goal of this research is to study the mechanical strength and fatigue behavior of nanocrystalline copper using atomistic simulations and to evaluate their performance as nanostructured interconnect materials. The results from the crack growth analysis indicate that nanocrystalline copper is a suitable candidate for ultra-fine pitch interconnects applications. This study has also predicts that crack growth is a relatively small portion of the total fatigue life of interconnects under LCF conditions. The simulations result conducted on the single crystal copper nano-rods show that its main deformation mechanism is the nucleation of dislocations. In the case of nanocrystalline copper, material properties such as elastic modulus and yield strength have been found to be dependent on the grain size. Furthermore, it has been shown that there is competition between the dislocation activity and grain boundary sliding as the main deformation mode This research has shown that stress induced grain coarsening is the main reason for loss of mechanical performance of nanocrystalline copper during cyclic loading. Further, the simulation results have also shown that grain growth during fatigue loading is assisted by the dislocation activity and grain boundary migration. A fatigue model for nanostructured interconnects has been developed in this research using the above observations Lastly, simulations results have shown that addition of the antimony into nanocrystalline copper will not only increase the microstructure stability, it will also increase its strength.Ph.D.Committee Chair: Rao R. Tummala; Committee Co-Chair: Ashok Saxena; Committee Member: Karl Jacob; Committee Member: Suresh Sitaraman; Committee Member: Thomas H. Sanders, J

    Chain configurations in light nuclei

    Get PDF
    The model of nuclear matter built from alpha-particles is proposed. The strong deformed shape for doubly even N=Z nuclides from carbon to magnesium has been determined according to this model. In this paper we undertake very simple approach, which assumes the existence of low lying chain configurations.Comment: 6 pages, 5 figure

    Stress relief as the driving force for self-assembled Bi nanolines

    Get PDF
    Stress resulting from mismatch between a substrate and an adsorbed material has often been thought to be the driving force for the self-assembly of nanoscale structures. Bi nanolines self-assemble on Si(001), and are remarkable for their straightness and length -- they are often more than 400 nm long, and a kink in a nanoline has never been observed. Through electronic structure calculations, we have found an energetically favourable structure for these nanolines that agrees with our scanning tunneling microscopy and photoemission experiments; the structure has an extremely unusual subsurface structure, comprising a double core of 7-membered rings of silicon. Our proposed structure explains all the observed features of the nanolines, and shows that surface stress resulting from the mismatch between the Bi and the Si substrate are responsible for their self-assembly. This has wider implications for the controlled growth of nanostructures on semiconductor surfaces.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Electronic states and optical properties of PbSe nanorods and nanowires

    Full text link
    A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.Comment: 35 pages, 12 figure

    Molecular biology of amitraz resistance in cattle ticks of the genus Rhipicephalus

    Get PDF
    Amitraz is an important product for the control of cattle ticks around the world. In comparison with other products for the control of ticks, it is quite affordable and it has a rapid knock-down effect. It binds with and activates adrenergic neuro-receptors of animals and it inhibits the action of monoamine oxidases (MAO). Resistance to amitraz has been documented in Rhipicephalus microplus, R. decoloratus and R. appendiculatus. Four mechanisms of resistance have been proposed, each of which is supported by evidence but none of which has been definitively confirmed as the cause of resistance in the field. The proposed mechanisms include genetic target site insensitivity in two G protein-coupled receptors, the beta-adrenergic octopamine receptor (BAOR) and the octopamine/tyramine receptor (OCT/Tyr), increased expression or activity of monoamine oxidases and increased expression or activity of the ATP binding cassette transporter

    Creation of a brane world with Gauss-Bonnet term

    Full text link
    We study a creation of a brane world using an instanton solution. We analyze a brane model with a Gauss-Bonnet term in a bulk spacetime. The curvature of 3-brane is assumed to be closed, flat, or open. We construct instanton solutions with branes for those models, and calculate the value of the actions to discuss an initial state of a brane universe.Comment: 9 pages, 10 figure
    • …
    corecore